پیش بینی غلظت آلاینده های هوای تهران بر اساس متغیرهای هواشناسی با استفاده از شبکه عصبی مصنوعی و رگرسیون خطی در فصول گرم و سرد

نویسندگان

  • راضیه فرهادی کارشناسی ارشدعلوم و مهندسی محیط زیست، دانشکده علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران
چکیده مقاله:

تهران آلوده‌ترین شهر کشور محسوب می‌شود که این آلودگی می‌تواند آثار دراز مدت و کوتاه مدتی بر سلامت انسان داشته باشد. از این‌رو پیش‌بینی غلظت آلاینده‌ها می‌تواند در برنامه‌ریزی‌های پیشگیری و کنترل مفید واقع شود. روشهای متفاوتی برای پیش‌بینی وجود دارد و دراین میان سالها، روش‌های شبکه‌ی عصبی پیشرفت قابل توجهی در پیش‌بینی آلودگی هوا داشته است. در این مطالعه، از شبکه‌ی عصبی مصنوعی پرسپترون سه‌لایه به‌منظور پیش‌بینی غلظت آلاینده‌های PM10، CO و شاخص کیفیت هوا (AQI) در هوای شهر تهران استفاده شد. داده‌های غلظت آلاینده‌ها از اداره‌ی کنترل کیفیت هوای تهران جمع‌آوری شد و داده‌های هواشناسی از اداره‌‌ی کل سازمان هواشناسی کشور طی سال‌های 1392 و 1393 جمع‌آوری شد. بیشترین ضریب همبستگی (R2) برای آلاینده PM10 با مقدار 0.83 در فصول گرم بود و بیشترین ضریب همبستگی آلاینده CO مربوط به فصول سرد بود (R2=0.74). در نهایت بیشترین ضریب همبستگی AQI در فصل سرد (R2=0.57) بود. در مدل رگرسیون خطی بیشترین ضریب همبستگی با مقدار 0.58 برای آلاینده PM10 در فصول گرم بود. بیشترین ضریب همبستگی در این مدل برای آلاینده CO با مقدار 0.33 در فصل سرد بود. درنهایت بیشترین ضریب همبستگی AOI (R2=0.31) در فصل گرم بود. این به این معنی است که با تغییرات متغیرهای هواشناسی، غلظت CO و ذرات معلق و مقادیر شاخص AQI تغییر می‌کند به گونه‌ای که افزایش باد باعث پراکنش آلاینده و کاهش غلظت آن می‌شود و افزایش درجه حرارت باعث افزایش غلظت آلاینده می‌شود. بنابراین بین آنها ارتباط وجود دارد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی میزان غلظت آلاینده های هوای تهران با استفاده از شبکه عصبی مصنوعی

در این تحقیق شبکه عصبی مصنوعی جهت برآورد و پیش بینی غلظت گازهای آلاینده هوا به کار رفته است.با توجه به خطر آلودگی هوا در شهر تهران و ایجاد مشکلات زیست محیطی و بیماری های خطرناک تنفسی و پوستی به ویژه برای کودکان و سالمندان و نیاز شدید به کنترل آن ، این تحقیق در جهت برنامه ریزی و کنترل این مشکل در تهران و همچنین شهرهای بزرگ دیگر انجام گرفته است. برای این منظور از آمار غلظت گازهای آلاینده هوای ثبت...

متن کامل

پیش بینی میزان غلظت آلاینده های هوای تهران با استفاده از شبکه عصبی مصنوعی

در این تحقیق شبکه عصبی مصنوعی جهت برآورد و پیش بینی غلظت گازهای آلاینده هوا به کار رفته است.با توجه به خطر آلودگی هوا در شهر تهران و ایجاد مشکلات زیست محیطی و بیماری های خطرناک تنفسی و پوستی به ویژه برای کودکان و سالمندان و نیاز شدید به کنترل آن ، این تحقیق در جهت برنامه ریزی و کنترل این مشکل در تهران و همچنین شهرهای بزرگ دیگر انجام گرفته است. برای این منظور از آمار غلظت گازهای آلاینده هوای ثبت...

متن کامل

پیش بینی سطح سازگاری نوجوانان بر اساس ویژگی‌های روان‌شناختی با استفاده از مدل‌های رگرسیون و شبکه های عصبی مصنوعی

زمینه: پژوهش حاضر یک بررسی در رابطه با ویژگی‌های روان‌شناختی نوجوانان و سطوح سازگاری آنها می‌باشد. با توجه به مبانی نظری در مورد روابط متقابل بین این مفاهیم از یک مدل سنتی مبتنی بر همبستگی و یک مدل نوین مبتنی بر پردازش موازی داده‌ها استفاده شده است. هدف: هدف از پژوهش حاضر بررسی توانمندی هر یک از مدل‌های یاد شده در پیش‌بینی سطوح سازگاری از طریق اندازه‌های مربوط به ویژگی‌های روان‌شناختی نوجوانان ...

متن کامل

پیش بینی غلظت آلاینده های گازی در هوای شهر تبریز با استفاده از شبکه عصبی

آلودگی هوا به عنوان یک چالش مهم در شهرهای بزرگ مطرح می­باشد که در نتیجه صنعتی شدن، گسترش شهرنشینی، رشد سریع ترافیک و افزایش فعالیت­های انسان تشدید شده است. آلاینده­های هوا باعث بروز اثرات منفی بر سلامت انسان و تخریب محیط زیست شده لذا آگاهی از غلظت آلاینده­ها می­تواند به عنوان اطلاعات کلیدی در برنامه­های کنترل آلودگی مورد استفاده قرار گیرد. روش­های متعددی برای پیش­بینی غلظت آلاینده­های هوا وجود ...

متن کامل

واکاوی کارایی روش های مبتنی بر شبکه های عصبی مصنوعی و رگرسیون خطی چندمتغیره در پیش بینی کشند

پیش‌بینی تغییرات کشند، به‌دلیل اهمیتی که در برنامه‌ریزی‌های ناوگان دریایی و نظامی، حمل و نقل و کشتیرانی، طراحی بنادر و سایر مسایل مرتبط با امور دریا دارد؛ از دیرباز مورد توجه بوده است. هدف این مطالعه بررسی عملکرد مدل‌های شبکه‌های عصبی پیش‌خور با 3 الگوریتم یادگیری کاهش شیب، شیب مزدوج و لونبرگ-مارکوارد در پیش‌بینی ساعتی تغییرات کشند است. به‌علاوه در تحقیق حاضر، نتایج حاصل از مدل رگرسیون خطی چندم...

متن کامل

برآورد دمای خاک از داده‌های هواشناسی با استفاده از مدل‌های یادگیری ماشین سریع، شبکه عصبی مصنوعی و رگرسیون خطی چندگانه

دمای خاک عامل کلیدی است که فرآیندها و خصوصیات فیزیکی، شیمیایی و بیولوژیکی خاک را کنترل می­کند؛ لذا بر کمیت و کیفیت تولید محصولات کشاورزی تأثیر می­گذارد. هدف از انجام این پژوهش برآورد دمای خاک با استفاده از پارامترهای هواشناسی به روش­های مختلف ماشین یادگیری بوده است. بدین منظور داده‌های هواشناسی و دمای خاک در عمق‌های 5، 10، 20، 30، 50 و 100 سانتی‌متری از 17 ایستگاه‌ سینوپتیک استان خوزستان مربوط ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 73  شماره 1

صفحات  115- 127

تاریخ انتشار 2020-03-20

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023